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TRAFFIC SAFETY FACTS
Research Note

Quantifying Drowsy Driving
Drowsy driving remains a problem for motorists. 
According to the National Highway Traffic Safety 
Administration’s National Center for Statistics and 
Analysis (NCSA), drowsy driving was a contributing fac-
tor in 775 deaths in 2018, or 2.1% of total fatalities involv-
ing motor vehicle crashes on U.S. roadways (NCSA, 2019) 
and, in 2015, an estimated 1.4% of all police-reported 
crashes (NCSA, 2017). However, these statistics, which 
are based upon information in police crash reports, likely 
underestimate the extent of the drowsy driving problem. 
Examining NHTSA’s National Automotive Sampling 
System Crashworthiness Data System, the American 
Automobile Association Foundation for Traffic Safety 
(AAAFTS) used multiple imputation to estimate the per-
centage of fatal crashes that involved a drowsy driver 
(Tefft, 2014). AAAFTS estimated that 21% of fatal crashes 
involved a drowsy driver.

The current project explored the feasibility of using 
machine learning algorithms to identify drowsy driv-
ing episodes in large-scale naturalistic driving datasets. 
The Strategic Highway Research Program 2 (SHRP2) 
Naturalistic Driving Study (NDS) collected data from 
more than 3,400 participating drivers in six States, 
yielding time series data for more than 5 million trips 
(Virginia Tech Transportation Institute, 2020). The SHRP2 
NDS database contains vehicle variables and video data, 
including a view of the driver’s face. Given the com-
bination of driver-facing camera views and extensive 
time history vehicle data such as acceleration and lane 
deviation, it may be possible to identify when drowsi-
ness was involved in crashes and near-crashes as well as 
in incident-free trips. To that end, the current research 
developed two machine learning algorithms to identify 
possible drowsy driving episodes within the SHRP2 
NDS database. For the purposes of this project, an algo-
rithm is defined as a process or set of rules to be followed 
in calculations or other problem-solving operations. The 
first algorithm used time history vehicle data that mea-
sured driving behaviors associated with drowsy driv-
ing, such as lane deviations. The second algorithm used 

face video data to identify driver’s behaviors associated 
with drowsiness, such as head nodding. 

Observer Rating of Drowsiness
Driver impairments in all trip segments (“epochs”) 
involving a crash or near-crash, as well as a sample of 
baseline driving, were manually coded. One category of 
possible driver impairments is “Drowsy, sleepy, asleep, 
fatigued,” and the category is defined as “Subject vehicle 
driver exhibits obvious signs of being asleep or tired, or 
is actually asleep while driving, degrading performance 
of the driving task” (VTTI, 2015). The research team 
obtained 589 one-minute epochs with drowsiness noted 
as a driver impairment and 200 additional baseline 
epochs in which there was no apparent driver impair-
ment due to drowsiness. To determine drowsiness level, 
three separate analysts coded the 789 epoch videos 
using the Observer Rating of Drowsiness (ORD) protocol 
(Wierwille & Ellsworth, 1994; Wiegand et al., 2009). The 
ORD protocol involves evaluating on a continuous scale 
the driver’s gestures, facial tone, and behavior for drows-
iness and provides a reliable instrument for identifying 
drowsiness (Wiegand et al., 2009). Due to poor video 
quality or missing data, researchers could not code some 
epochs with the ORD protocol. Ultimately, 741 (94%) of 
the epochs were retained and rated. This project used 
the average of the three ORD ratings as “ground truth” 
for testing the two drowsy driving identification algo-
rithms (i.e., the algorithms would be valid if they could 
successfully identify drowsy driving episodes initially 
coded using the ORD protocol). 

Algorithm 1: Time History Vehicle Data 
And ORD
The first algorithm used time history vehicle data, includ-
ing vehicle-based sensor data, to identify instances of 
drowsy driving. Researchers removed long segments 
of missing data, imputed short sections of missing data 
using truncation and interpolation, removed turns 
from the data as they can introduce a combination of 
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 intentional lane departure and slow speeds that are dif-
ferent from normal driving behaviors, and truncated 
trips whenever the speed was less than 30 kph to remove 
low-speed maneuvers such as stopping at intersections. 
Researchers then divided each ORD-coded epoch into 
6-second subsequences for analysis purposes. For each
subsequence, the researchers calculated the 25th percen-
tile, median, 75th percentile, and standard deviation for
the following sensor-based measures: yaw rate (or the
rotation of the car around the z axis) and lane position as
a deviation from the center of the lane. Researchers also
calculated lane position as a slope relative to the lane
center, i.e., they examined the change in distance from
the center line over time. Researchers then calculated the
25th percentile and 75th percentile for the epochs across

all the subsequences for yaw rate, lane position as a 
deviation from the center of the lane, and lane slope (see 
Table 1). Researchers also derived the number of lane 
departures and lane changes in the epoch. If a single 
lane departure was categorized as left at the beginning 
and right at the end, or vice versa, then it was classified 
as a lane change because a driver crossed the center line. 
This data enabled the calculation of the number of lane 
departures with subsequent corrections. Additional 
time history vehicle data included time the trip began 
(in binned 3-hour windows) and trip duration (i.e., the 
time from the start of the trip to the start of the epoch). 
Researchers used these measures as the input features 
for algorithm development. 

Table 1
Algorithm Inputs
Yaw rate

1 25th percentile of all subsequences of gyro_z_25%. Gyro_z_25% is the 25th percentile of yaw rate, the rate of change around the yaw axis (or 
the rotation of the car around the z axis).

2 25th percentile of all subsequences of gyro_z_75%. Gyro_z_75% is the 75th percentile of yaw rate, the rate of change around the yaw axis.

3 75th percentile of all subsequences of gyro_z_25%. Gyro_z_25% is the 25th percentile of yaw rate, the rate of change around the yaw axis.

4 75th percentile of all subsequences of gyro_z_75%. Gyro_z_75% is the 75th percentile of yaw rate, the rate of change around the yaw axis.

Lane Position (deviation from center of lane)

5 25th percentile of all subsequences of lanepos_25%. Lanepos_25% is the 25th percentile of lane position. 

6 25th percentile of all subsequences of lanepos_75%. Lanepos_75% is the 75th percentile of lane position. 

7 75th percentile of all subsequences of lanepos_25%. Lanepos_25% is the 25th percentile of lane position. 

8 75th percentile of all subsequences of lanepos_75%. Lanepos_75% is the 75th percentile of lane position.

Lane Departures

9 The number of lane departures.

Slope of Lane Position

10 25th percentile across all subsequences of the slope of lane position. Slope of lane position is a measure of the change in lane position across a 
subsequence.

11 75th percentile across all subsequences of the slope of lane position. Slope of lane position is a measure of the change in lane position across a 
subsequence.

Trip Start Time and Duration

12 The 3-hour time bin at the start of the trip.

13 Trip duration at the start of epoch.

Researchers then created a vector for each epoch using 
the 13 features described above. These vectors served 
as input to several machine learning algorithms that 
classified epochs as drowsy or not. After eliminating 
epochs with significant missing time history vehicle 
data, researchers retained 432 with complete vectors. 
The ORD scale ranged from 0 to 100, with 0 considered 
to be not drowsy, 50 to 69 considered to be moderately 
drowsy, and 70 or higher considered to be very drowsy. 
Researchers used two different thresholds to divide driv-
ers’ ORD scores into drowsy and non-drowsy: 50 and 70. 

Researchers applied four tree-based classifiers from the 
Python library “scikit-learn” to the data: gradient boost-
ing classifier, random forest classifier, extra trees classi-
fier, and ada boost classifier. The scikit-learn library can 
return the relative importance of each input feature to 
the training of a tree-based classifier. The relative impor-
tance of each feature can be compared. 

ORD Threshold = 50
Researchers reserved one third (33%) of the epochs as 
a test set to evaluate the performance of the algorithm. 
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Of the four tree-based learners described, the extra trees 
classifier performed the best at classifying drowsy driv-
ing episodes and was selected to be the algorithm for an 
ORD threshold of 50. 

When applied to the test set, the researchers obtained the 
confusion matrix shown in Table 2. The confusion matrix 
describes the extent that the algorithm correctly identi-
fied the epochs in which the driver was drowsy (per the 
ORD ratings). Thus, for an ORD threshold of 50, epochs 
with ORD ratings equal to or greater than 50 were con-
sidered “drowsy.” The Matthews Correlation Coefficient 
(MCC), a measure of the quality of binary classifications, 
was 0.25. Like other correlation coefficients, a value of 0 
corresponds to random, or no correlation, 1 is complete 
agreement, and -1 is complete disagreement. A correla-
tion of 0.25 represents modest agreement. 

The receiver operating characteristic (ROC) curve for the 
algorithm is shown in Figure 1, with its area under the 
curve (AUC) marked on the graph. An AUC of 1.0 would 
perfectly identify drowsiness and an AUC of 0.5 (Figure 
1, dotted line) would identify drowsiness at the level of 
chance, or the accuracy if the algorithm was guessing 
randomly about an epoch’s classification. The AUC cor-
responding to the ORD threshold of 50 was 0.72.

Table 2
Confusion Matrix With ORD Threshold of 50

Algorithm Classification

False True

ORD
Rating

False 16 38

True 9 80

Figure 1
ROC Curve With ORD Threshold of 50
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Researchers rank ordered the features in terms of 
importance of generating the model’s predictions. For 
classifying drowsy epochs at an ORD threshold of 50 
(moderately drowsy), trip start time (12) was the most 
important feature (while trip duration (13) was the sec-
ond most important, its importance was similar to many 
lane position measures).

ORD Threshold = 70
In this case, epochs with ORD ratings of 70 or greater 
were considered “drowsy,” indicating a more extreme 
level of drowsiness. Of the four tree-based learners 
described, the gradient boosting classifier performed 
the best at classifying drowsy driving episodes and was 
selected to be the algorithm for an ORD threshold of 70. 

When applied to the test set, the researchers obtained the 
confusion matrix shown in Table 3. The MCC was calcu-
lated as 0.33, a modest correlation. The ROC curve with 
marked area (AUC) is shown in Figure 2. The AUC for an 
ORD threshold of 70 was 0.76.

Table 3
Confusion Matrix With ORD Threshold of 70

Algorithm Classification

False True

ORD
Rating

False 6 13

True 6 118

The importance of each feature for an ORD score of 70, 
or very drowsy, was rank ordered. The two most impor-
tant features were the 75th percentile of the lane position 
slope (11) and the 25th percentile of the lane position slope 
(10), variables that describe the amount of lane deviation 
over an epoch. The important features from the thresh-
old of 50, trip start time (12) and trip duration (13), were 
the fifth and sixth most important for the threshold of 70.

The results indicate moderate success for the classifiers 
used for identifying cases of moderately drowsy driv-
ing (ORD of 50) or of severely drowsy driving (ORD of 
70). Three features are in the top five for both thresholds 
when rank ordered: trip duration (13), 25th percentile of 
all subsequences of the 25th percentile of lane position 
(5), and 25th percentile of all subsequences of the 75th 
percentile of lane position (6). Thus, information about 
the length of time a driver had been driving and the 
deviation from the center of the lane were generally use-
ful for identifying drowsy epochs. On the other hand, 
information about the slope of the lane position (10, 11) 
became the most important features after raising the 
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threshold to 70, indicating that lane position was useful 
for classifying “very drowsy” epochs. The most impor-
tant feature for the moderately drowsy classifier was the 
trip start time, followed by the trip duration, indicating 
that information about time of day and length of trip 
were useful for classifying “moderately drowsy” epochs. 
These results indicate that moderate drowsiness could 
be suggested by typical predictors of time of day and 
time on task, whereas very drowsy drivers have more 
pronounced drifts in the lane that can be detected using 
vehicle sensors. These factors may be used to narrow the 
search for drowsy driving episodes within naturalistic 
driving data but may not be robust enough to correctly 
predict all or most episodes of drowsy driving. 

Algorithm 2: Face Video and ORD Ratings
To complement the time history vehicle data as a means 
of detecting episodes of drowsy driving, the project 
team also examined the driver’s face video, including the 
minute of the epoch with an ORD rating and one minute 
prior. Researchers developed a machine learning algo-
rithm to detect epochs that had ORD ratings above 50, 
or moderately drowsy. First, machine vision algorithms 
processed the face video to extract the location of facial 
landmarks (e.g., eyes and nose) and, from those, the ori-
entation of the drivers’ head (e.g., yaw, pitch, and roll of 
the head) using video analysis software (Smith, Dyer, 
Chitturi, & Lee, 2017). In addition, researchers produced 
landmark coordinates for the eyes and mouth to deter-
mine eye/mouth openness. After extracting the face data 
for a frame of the video, researchers used the data as a 
starting point for the analysis of the next frame. In the 
final stage, the research team initialized the next frame 

using the estimate of head position and orientation from 
the previous video frame. 

The data then went through a three-stage process to 
develop the model for predicting drowsy driving. The 
first stage highlighted and filtered highly uncertain or 
inconsistent data. Because video quality varied consider-
ably across epochs, not all data extracted by the machine 
vision algorithm accurately represented the drivers’ 
facial features and head orientation. For this reason, 
researchers filtered the output of the machine vision 
algorithm to eliminate epochs where the machine vision 
algorithm produced low confidence scores. Low confi-
dence typically reflected poor lighting conditions, such 
as nighttime driving or extremely bright situations. After 
this filtering process, a total of 594 epochs remained. 
These epochs were split into training (85%) and testing 
(15%) sets. The epochs were a stratified random sample 
that created an equal number of drowsy and alert cases 
(according to ORD ratings). 

The second stage involved deriving features from 
the output of the machine vision algorithm, i.e., sum-
mary statistics that are plausibly related to drowsiness. 
Examples included PERCLOS, the percent of time the 
eyes are closed over a 60-second window, as well as 
measures of the changes of head orientation that could 
indicate drowsiness-related head bobs. Beyond these fea-
tures, researchers also included the median and inter-
quartile range of the head position and its yaw, pitch, 
and roll, as well as eye and mouth position. Additional 
features were developed by combining different factors 
(such as head position with size of mouth gap).

The third stage fit a machine learning algorithm to the 
features to predict drowsiness. Many possible algo-
rithms can serve this purpose, and researchers imple-
mented five: general linear model, lasso, support vector 
machine, random forest, and extreme gradient boost-
ing. Researchers trained each of these five models on 
the facial features, using a 10-fold cross-validation tun-
ing process. If a model required its own tuning param-
eters, such as the number of decision trees in the random 
forest, researchers estimated these by fitting the model 
with a range of these parameters and then selecting the 
one that produced the best performance. The research 
team repeated the 10-fold cross-validation process twice, 
with each repetition selecting different training data. 
The repeated cross-validation provides an estimate of 
how well the model performs with data that were not 
included in the training set. 

Figure 2
ROC Curve With ORD Threshold of 70
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Figure 3 summarizes the performance of the models on 
the training and testing data. The area under the ROC 
curve measure (AUC) on the y-axis represents the overall 
accuracy of the model. It indicates how the model sepa-
rates instances of drowsy and alert driving. As stated 
above, an AUC of 1.0 would perfectly identify drowsi-
ness, and an AUC of 0.5 would identify drowsiness at the 
level of chance. The extreme gradient boosting algorithm 
had the best performance on the test data (AUC = 0.76) 
and the smallest variation of performance with the cross-
validation on the training data. The x-axis represents the 
rate of false alarms at different thresholds and the y-axis 
represents the true positive rate. The diagonal line rep-
resents chance performance. The model performance is 
imperfect, but well above chance. The most important 
features for predicting drowsiness included factors such 
as eye gap, mouth gap, pitch, yaw, and roll of the head.

Figure 3
ROC Plot for the Extreme Gradient Boosting Model

1.00

0.75

0.50

0.25

0.00

0.00 0.25 0.50 0.75 1.00

AUC = 0.76

se
ns

iti
vi

ty

1 - speci�city

Exploring Misclassifications
Although the time history vehicle data algorithm and the 
machine-vision face video algorithm performed better 
than chance at predicting drowsy driving epochs, they 
still made a fair number of misclassifications. Upon fur-
ther review, patterns emerged that helped to explain the 
misclassifications. When the ORD raters classified the 
driver as drowsy, but the time history vehicle data algo-
rithm classified the driver as not drowsy, there tended 
to be yawning and other clear indicators of drowsiness 
on the video that could not be captured by the time his-
tory vehicle data model. For some epochs, “swerving” 
unrelated to drowsiness was observed, which may 
have caused the time history vehicle data algorithm to 

 classify the epoch as drowsy when the ORD rating was 
not drowsy. In addition, for some videos, the coders may 
have been influenced toward higher ORD ratings due to 
unusual facial features (like droopy eyes or squinting) 
or blurry video. Finally, when there was disagreement 
between the ORD and the machine-vision face algo-
rithm, there were more misses than false alarms, and 
about half of the misses occurred when the driver was 
engaged in some other activity (talking to someone, look-
ing at something in the car) and also appeared drowsy. 

To better understand the nature of the misclassifications, 
researchers used Fisher’s exact test (two-tailed) to deter-
mine if the distribution of epoch characteristics differed 
between the outcome categories of the video epochs 
reviewed. Driver factors (epoch characteristics) included 
whether the driver was talking to someone, squinting, 
if she/he had unusual facial features, if the driver was 
looking at something in the car, was distracted, or had 
displayed any other unusual behavior. The distribu-
tion of counts across the two groups (one or more driver 
factors noted vs. no driver factors noted) varied signifi-
cantly between outcome categories (p = .013). The high-
est percentage of epochs with driver factors noted (62%) 
occurred for the outcome category where there was dis-
agreement between ORD and the machine vision face 
algorithm. It is possible that the face algorithm some-
times had trouble with the correct interpretation of 
unusual facial features or facial behaviors. 

Researchers also classified traffic conditions as heavy, 
medium, or light for each epoch. The distribution of 
counts across the two groups (heavy or medium vs. light 
traffic conditions) varied significantly between outcome 
categories (p = .0004). In cases where the time history 
vehicle data algorithm predicted the driver to be drowsy, 
but the ORD rating did not, 73% of the epochs occurred 
in heavy or medium traffic. It is possible that in these 
cases, the algorithm picked up instances of hard braking 
or lane departures that were in response to the traffic 
rather than the driver’s physical state. Similarly, for cases 
where the time history vehicle data algorithm classifica-
tion was uncertain, 63% of the epochs occurred in heavy 
or medium traffic.

For each epoch reviewed, researchers noted unusual 
driving behaviors such as swerving, sudden braking, 
tailgating, maintaining an especially long headway, or 
other potentially unsafe driving behaviors. The dis-
tribution of counts across the two groups (one or more 
unusual driving behaviors noted vs. no unusual driv-
ing behaviors noted) differed significantly by outcome 
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 category (p = .005). In most epochs reviewed, researchers 
noted one or more unusual driving behaviors. For both 
outcome categories where the time history vehicle data 
algorithm classification was drowsy driving (i.e., the 
ORD rating also classified the driver as drowsy or the 
ORD rating did not classify the driver as drowsy, but the 
algorithm classified the driver as drowsy), the epochs 
contained at least one unusual driving behavior. By con-
trast, among the cases that the time history vehicle data 
algorithm classified as not drowsy, 75% of epochs con-
tained one or more unusual driving behaviors. Also, all 
epochs with wide variation between ORD coder ratings 
contained unusual driving behaviors. Aspects exam-
ined by researchers that did not appear to affect misclas-
sifications included the overall subjective quality of the 
videos, horizontal curvature of the road, and lighting 
conditions. 

Conclusions
The research indicates that while naturalistic driving 
data involving time history vehicle data (including vehi-
cle sensors) and face video assessment show promise, 
they are not currently capable of consistently detecting 
drowsy driving. With naturalistic driving data, the time 
history vehicle data algorithm could use the time of day 
in which the trip began and more pronounced drifts 
in the lane to screen large data for possible moderately 
drowsy and very drowsy driving episodes, respectively. 
For the face video assessment algorithm, although the 
false alarm and miss rate of the current best performing 
algorithm would likely make it inappropriate as a warn-
ing system for drivers, the performance might be suffi-
cient for screening large naturalistic data sets. While the 
algorithms may be helpful in locating potential drowsy 
driving episodes within naturalistic data, significant 
improvements need to be made before they can be used 
to consistently identify drowsy driving epochs.
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